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Abstract

We develop a variational method for analysing vortex lattice geometry in quasi-two-dimensional

dipolar BECs in the fast-rotating limit. The vortex lattice geometry is found to depend on

the relative strength of the contact versus dipolar interactions, εdd, as well as the angle of the

dipole polarisation α. In the region of the (εdd, α) parameter space where the effective local

interactions dominate (1/εdd & 1), we find that the vortex lattice geometry is triangular, as is

the case in non-dipolar BECs. However, in regions where the effective non-local interactions

become significant (−1 . 1/εdd . 1), we find that the vortex lattice geometry is square or

rectangular. For the case of on-axis polarisation (α = 0), we find that triangular, square

and rectangular vortex lattice geometries are possible. However, as the polarisation is tilted

off-axis (α is increased above zero), the rectangular lattice geometry eventually ceases to

exist. These results qualitatively agree with two previous studies for the case of on-axis

polarisation (α = 0) [1, 2]. Our results for the case of off-axis polarisation (0 < α ≤ π
2
) are a

new contribution to research in this area.
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Chapter 1

Introduction

1.1 A brief history of BEC

In a gas of atoms, the profound differences between bosons and fermions ordinarily have
no observable effect on a macroscopic scale. In fact, it is often sufficient to describe such
gases, even on a microscopic scale, using a classical theory such as statistical mechanics.
At ultra-cold temperatures, however, the differences between bosons and fermions become
apparent in a remarkable way through the phenomenon of Bose-Einstein condensation (BEC).
This phenomenon is characterised by macroscopic population of the lowest energy quantum
state and is a unique consequence of the quantum statistical nature of bosons — it does not
occur for the case of fermions.

BEC was first predicted to occur by A. Einstein in 1925 [3]. However, it wasn’t until 70 years
later, in 1995, that Einstein’s prediction was verified experimentally for the first time in a
dilute atomic gas. This first successful experiment was carried out by a group led by Cornell
and Wieman using a gas of 87Rb atoms cooled to 170 nK [4]. Ketterle’s group followed
shortly after with an observation of BEC in 23Na atoms [5]. The success of these experiments
was largely due to technological advances in cooling methods and magneto-optical trapping.
Cornell, Wieman and Ketterle later received the 2001 Nobel Prize in Physics for their
contributions to the study of BECs [6].

A more recent experimental development is the achievement of BEC in dipolar Bose gases,
that is, gases of bosonic atoms or molecules which have strong magnetic or electric dipole
moments. The first successful experiment of this kind was conducted in 2005 using a gas of
52Cr atoms which have a magnetic dipole moment of about 6µB [7]. This was an impressive
experimental feat and required novel cooling techniques to deal with relaxation processes
which occur due to the dipolar nature of the atoms. Since 2005, other experimental groups
have achieved BEC using atomic species with even stronger magnetic dipole moments. Of
particular interest is the achievement of BEC using 164Dy which has a magnetic dipole
moment of 10µB [8]. In the 164Dy BEC, the interactions between the magnetic dipole
moments are so strong that they dominate over the usual van-der-Waals-like interactions.
As such, this could lead to promising investigations of in the strongly dipolar regime.
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Chapter 1. Introduction 2

1.2 A theory of BEC: Gross-Pitaevskii theory

In order to give an exact theoretical treatment of BEC, one must solve the quantum many-
body problem for a Bose gas. This remains a formidable challenge with current technology
(i.e. classical computers), because the size of the Hilbert space grows exponentially with
the number of particles in the gas. Fortunately, however, many of the important properties
of BECs may be investigated using low-order approximations to the full quantum theory.
The most widely used of these is Gross-Pitaevskii (GP) theory — a mean-field theory which
neglects quantum fluctuations entirely [9, 10].

In GP theory, the field operator Ψ̂(r, t) which appears in the full quantum theory is replaced
by a classical field Ψ(r, t), called the mean-field order parameter or condensate wavefunction.
This replacement is valid only under certain conditions. In particular, the gas must be dilute
so that interactions between atoms are weak, and it must be ultra-cold so that essentially
all of the atoms are in the condensed state. Furthermore, the inter-atomic potential which
appears in the full quantum theory, must be replaced by an effective pseudo-potential. This
ensures that the mean-field (GP) theory reproduces the correct low-energy (s-wave) scattering
properties.

Assuming these conditions have been met, the state of the BEC is well-described by the
mean-field order parameter Ψ(r, t), which obeys the following partial integro-differential
equation:

i~
∂Ψ(r, t)

∂t
=

(
− ~2

2M
∇2 + Vext(r) +

∫
dr′ V (r− r′) |Ψ(r′, t)|2

)
Ψ(r, t). (1.1)

This is the generalised GP equation for a Bose-condensed gas. Here, M denotes the mass
of the atoms in the gas, Vext(r) denotes an external potential (e.g. a trapping potential),
and V (r) denotes the inter-atomic pseudo-potential. Owing to the similarities between
this equation and the Schrödinger equation, it is common to regard the mean-field order
parameter Ψ(r, t) as a wavefunction. One must be careful, however, not to confuse Ψ(r, t)
with the many-body wavefunction of the gas. Instead, Ψ(r, t) should be interpreted as a
single particle wavefunction which describes the state of each atom in the condensate. It is
normalised so that

∫
dr |Ψ(r, t)|2 = N , where N is the number of atoms in the condensed

state.

Another useful result of the GP theory, is the GP energy functional:

E[Ψ] =

∫
dr

{
~2

2M
|∇Ψ(r, t)|2 + Vext(r) |Ψ(r, t)|2

}
+

1

2

∫
dr

∫
dr′ |Ψ(r, t)|2 V (r− r′) |Ψ(r′, t)|2 ,

(1.2)

which allows one to evaluate the energy of the condensate as a function of the mean-field
order parameter. This is particularly useful in determining approximate analytic expressions
for Ψ(r, t) by applying the variational principle.
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1.3 Inter-atomic interactions

Many of the properties of BECs are governed by the interactions between the constituent
atoms. In early experiments, researchers investigated dilute BECs formed from alkali metals,
such as rubidium and sodium. In these BECs, the dominant interaction between atoms
is a van-der-Waals-like interaction, which is isotropic and short-range, decaying as ∼ 1/r6.
By considering this interaction rigorously using scattering theory, it is possible to show
that s-wave collisions are dominant at low temperatures and particle number densities [11].
Higher-order partial wave collisions, such as p-wave and d-wave collisions, are suppressed.
For the purposes of GP theory, this means that the van-der-Waals-like interaction may be
effectively modelled using the following contact interaction pseudo-potential:

Ucontact(r) = g δ(r), (1.3)

where g = 4π~2as/M and as is the s-wave scattering length. In experiments, the strength
of the interaction, g, may be tuned over a wide range of values by applying an external
magnetic field to the system. This exploits a phenomenon known as Feshbach resonance [12].
If g is tuned to be positive then the interaction between atoms is repulsive; if g is negative
then the interaction is attractive.

By the early 2000s, BECs with contact interactions were quite well understood. As a result,
researchers began to think about realising condensates with different, richer interactions. This
lead them to consider the dipolar interaction, which acts between particles with permanent
electric or magnetic dipole moments. Unlike the contact interaction, the dipolar interaction is
anisotropic and long-range, decaying as ∼ 1/r3. For the most general case in which the dipole
moments are unpolarised (illustrated in Figure 1.1(a)), the form of the dipolar interaction
potential is as follows:

Udd(r) =
Cdd

4π

(ê1 · ê2) |r|2 − 3(ê1 · r)(ê2 · r)

|r|5
. (1.4)

Here ê1 and ê2 are unit vectors which specify the orientation of the dipole moments, r is the
relative separation of the particles, and Cdd is the coupling constant. If the particles have
a permanent electric dipole moment, d, then Cdd = d2/ε0; otherwise if the particles have a
permanent magnetic dipole moment, µ, then Cdd = µµ0.

To date, the majority of research regarding the dipolar interaction in BECs has focussed
on the special case in which the dipole moments are uniformly polarised by an external
polarising field (see Figure 1.1(b)). In this case the anisotropy of the interaction is more
pronounced (it tends to average out over a large number of particles in the un-polarised case).
Assuming that the dipole moments are polarised along p̂, the dipolar interaction potential is
given by:

Udd(r) =
Cdd

4π

1− 3(p̂ · r̂)2

|r|3
. (1.5)

In this form, the anisotropy of the interaction is clear: as the angle between p̂ and r̂ changes,
the numerator 1−3(p̂· r̂)2 varies between −2 and 1. If the dipole moments sit side-by-side (see
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(a)

r
ê1

ê2
(b)

r

p̂

p̂

(c) (d)

Figure 1.1: Two particles interacting via the dipolar interaction. (a) The un-polarised case.
(b) The polarised case. (c) Dipoles oriented side-by-side feel a repulsive force. (d) Dipoles oriented
top-to-tail feel an attractive force.

Figure 1.1(c)), then p̂ · r̂ = 0 and the interaction is repulsive. However, if the dipole moments
are in a top-to-tail configuration (see Figure 1.1(d)), then p̂ · r̂ = 1 and the interaction is
attractive.

In order to incorporate dipolar interactions into the GP theory, one must again derive an
effective pseudo-potential to use in place of the true inter-atomic potential. By treating
the problem rigorously using scattering theory [13, 14], one may show that the following
pseudo-potential is appropriate away from scattering resonances:

V (r) = Ucontact(r) + Udd(r), (1.6)

where we note that the contact interaction strength g is now in principle a function of
Cdd. This means that all partial waves contribute to scattering in the presence of dipolar
interactions. As a result, both long-range and short-range interactions play a crucial role in
the physics of dipolar BECs.

1.4 Superfluidity and vortices in BECs

A direct consequence of BEC in quantum gases is the phenomenon of superfluidity. In fact,
it is possible to show, starting from the quantum field theory of BEC, that superfluidity
arises from the way in which the field operator Ψ̂(r, t) transforms between Galilean reference
frames and the fact that a classical field Ψ(r, t) may be associated with the macroscopic
component of Ψ̂(r, t). Based on these considerations alone, one may deduce that the flow
velocity of particles in a BEC is of the form:

v(r, t) =
~
M

∇S(r, t), (1.7)
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where S(r, t) is the phase of the classical field Ψ(r, t) [15]. With this result, it is clear that the
flow velocity in a BEC must obey the irrotationality condition: ∇× v = 0 — the hallmark
of superfluidity.

As a result of the irrotationality of the flow velocity, BECs display a striking response to
rotation. In an ordinary classic fluid rotating with angular velocity Ω, the flow velocity
approaches that of a rotating rigid-body, such that ∇× v→ 2Ω. This classical fluid flow
clearly violates the irrotationality condition of a superfluid. As a result, the only way in
which a rotating BEC may acquire angular momentum, is through the nucleation of quantised
vortices. These are singular points (in two dimensions) or lines (in three dimensions) of
vanishing density, about which the circulation of v(r, t) is quantised in units of h/M [15].

In general, quantised vortices are unstable configurations — they are only energetically
favourable when the rotation frequency of the BEC exceeds a critical value Ωc. The functional
dependence of Ωc has been investigated in trapped non-dipolar [16] and dipolar [17] BECs
using a variational approach. Roughly speaking, one finds that the critical rotation frequency
for vortex nucleation is of the same order as the radial trapping frequency ωρ. Typical values
of Ωc are between 0.3ωρ and 0.9ωρ — the exact value depends on the particular parameters
of the system.

1.5 Vortex lattices

As the rotation frequency of a BEC is increased beyond the critical value Ωc, more and more
vortices will appear in the system as a means of storing angular momentum. If the rotation
frequency is maintained at a fast, stable value, then the BEC will evolve to a state in which
the vortices are arranged on the sites of a lattice (see Figure 1.2). In the rotating frame of
reference, this vortex lattice state is stationary, implying that the lattice as a whole rotates
as a rigid body at the same rotation frequency as the BEC.

Vortex lattices are not unique to rotating BECs — they are a general feature of rotating
superfluids. In fact, the first studies of vortex lattices occurred in the 1950s and 1960s in the
context of superconducting alloys and superfluid helium [18–20]. Russian physicist Abrikosov,
made a number of important contributions to these studies: in particular, he predicted that
the geometry of the lattice would be triangular [19]. This was confirmed experimentally for
the first time in superconducting niobium in 1964 [20].

In the late 1990s, the study of vortex lattices was revived in the context of BECs. A significant
amount of research has already been conducted in this area, with researchers considering
equilibrium properties, such as lattice geometry [21, 22] and lattice uniformity [23, 24], as
well as non-equilibrium properties, such as Tkachenko waves [25, 26] and vortex aggregation
[27]. However, much of the work thus far has focussed on vortex lattices in non-dipolar BECs.
Whilst there have been a few theoretical studies in the dipolar case [1, 2, 28], these studies
have not yet been supported by experiment.
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Figure 1.2: Experimentally-obtained image of a triangular vortex lattice in a rapidly-rotating
condensate of 87Rb atoms. (Source: Coddington et al. Phys. Rev. A. 70 063607)

1.6 A new research problem

In this thesis, I will develop a method for analysing vortex lattice geometry in fast-rotating
dipolar BECs. This problem has already been covered rather extensively for the case of
non-dipolar BECs, where it is known from theory [21, 29] and experiment [30] that the lattice
geometry is always triangular. A few theoretical studies have also been conducted for the
dipolar case which show that non-triangular lattice geometries are possible [1, 2, 28], however
they are restricted to a special situation in which the dipole polarisation is fixed along the
rotation axis. In addition, these previous studies also use different analytic methods to the
one I shall use here.

In Zhang and Zhai’s study, the dipolar interaction potential is assumed to be strictly two-
dimensional, rather than a more realistic quasi-two-dimensional potential [1]. Their treatment
of the problem is otherwise quite similar to my own, excluding the fact that their treatment
is limited to the special case of on-axis polarisation. Cooper et al. take a very different
analytic approach compared to that of Zhang and Zhai and my own. They discretise space
and consider a small region of the BEC subject to periodic boundary conditions, rather than
considering the vortex lattice over the entire BEC [2]. Yi and Pu approach the problem in a
completely different way, by numerically simulating the GP equation [28]. This approach
should theoretically give the most accurate results, however it is difficult to systematically
cover the entire parameter space in this way, because it is necessary to run an enormous
number of simulations.

In developing my own method of studying vortex lattices in dipolar BECs, I shall draw on a
method that was originally used in the study of vortex lattices in two-component non-dipolar
BECs due to Mueller and Ho [31]. Building on this method, I aim to investigate vortex
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lattice geometry in fast-rotating, trapped dipolar BECs for arbitrary relative interaction
strength εdd = Cdd/3g and arbitrary dipole polarisation p̂. In doing so, I shall make the
following assumptions:

• fast rotation: the rotation frequency of the gas, Ω, approaches the transverse trapping
frequency ωρ,

• weak interactions : the mean interaction energy per atom is much smaller than the trap
energies ~ωρ and ~ωz,

• centred uniform lattice: the vortices are arranged on a lattice which is not deformed,
with one of the vortices centred on the axis of rotation.



Chapter 2

Vortex lattices in non-dipolar BECs

We shall begin our analysis by considering vortex lattices for the simplest case of a non-dipolar
BEC. Although this case has been covered rather extensively in the literature, it will be
useful for the reader to provide a comprehensive, self-contained review here. In later chapters,
we shall build on the results and methodology presented in this review to extend our analysis
to the dipolar case. By neglecting dipolar interactions for now, we may avoid a great deal of
convoluted mathematics which only serves as a distraction to the reader at this point.

Our method for analysing vortex lattices will essentially be an application of the variational
principle, which is covered in most elementary quantum mechanics texts. A basic outline of
the method is as follows:

1. Make an ansatz for the condensate wavefunction which describes an arbitrary vortex
lattice as a function of various parameters.

2. Substitute the ansatz for the condensate wavefunction into the energy functional.

3. Minimise the energy with respect to the parameters which describe the lattice in order
to obtain the “optimal” vortex lattice solution.

Although this seems quite straightforward, each step requires us to deal with a number of
intricacies. Step 1 in particular is highly non-trivial, because we must somehow make an
appropriate guess for the form of the condensate wavefunction, which at the same time, is
flexible enough to describe all possible types of vortex lattice. To guide us along these lines,
we shall begin by considering the form of the energy functional (and Hamiltonian) for the
system.

2.1 The energy functional for a rotating BEC in quasi-

2D

We have already seen an expression for the energy functional of a condensate in Section 1.2.
Whilst this expression is quite general, it is not useful for our study of vortex lattices because

8
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it requires that the condensate be in a stationary state. This is not physically possible when
vortices are present, because the condensate must be rotating in order for vortices to appear,
and the rotation breaks the time-independence of the Hamiltonian. Our focus in this section
will therefore be to derive an alternative expression for the energy which is applicable to
rotating condensates.

In order to proceed, we transform to a reference frame in which the condensate appears
to be in a stationary state. Until now, we have been working in the laboratory frame. An
observer in the laboratory frame will see the condensate rotating at the same frequency as the
external potential which is driving the rotation. To make the condensate appear stationary,
we must therefore transform to a frame that rotates along with the external driving potential.
The Hamiltonian in this new rotating frame is given by H ′ = H − L · Ω where H is the
Hamiltonian for the non-rotating system, L is the angular momentum operator and Ω is the
angular velocity of the rotation [32]. In the rotating frame, it now makes sense to look for
stationary solutions because H ′ is time-independent. This means we can use the expression
for the energy functional given in Equation (1.2) so long as we work in the rotating frame.

Let us now evaluate the energy functional in the rotating frame for the specific system we
would like to consider. We shall assume that the condensate is comprised of N identical
bosonic particles of mass M , and that it is rotating at constant angular velocity Ω about
the z-axis. Furthermore, we shall assume that the condensate is confined in a cylindrically
symmetric harmonic trap with longitudinal and radial trap frequencies denoted by ωz and
ωρ respectively. Using the theory of Section 1.2 as a reference, we have that the energy
functional in the rotating frame is given by

E ′[Ψ] =

∫
dr Ψ(r)∗H ′0 Ψ(r)︸ ︷︷ ︸

E ′0[Ψ]

+
1

2

∫
dr1

∫
dr2 %(r1)V (r1 − r2) %(r2)︸ ︷︷ ︸

Eint[Ψ]

, (2.1)

where %(r) = |Ψ(r)|2 is defined to be the condensate density. There are two distinct
contributions to the total energy: a single-particle energy contribution E ′0, and an interaction
energy contribution Eint. The single-particle energy contribution is associated with the
Hamiltonian

H ′0 =
1

2M
(i~∇ + ΩM ẑ× ρ)2 +

1

2
M(ω2

ρ − Ω2)ρ2 +
1

2
Mω2

zz
2. (2.2)

This includes the kinetic energy term and the external trapping potential, both of which
appear slightly modified due to the presence of rotation (recall that H ′0 = H0 − ΩLz). The
interaction energy contribution is associated with the two-particle pseudo-potential

V (r) = g δ(r). (2.3)

Only contact interactions are included here since we are considering the non-dipolar case.

With Equation (2.1), we have achieved our goal of finding an expression for the energy
of a rotating condensate. However, we can reduce this expression further if we assume
that the condensate is in the quasi-two-dimensional (quasi-2D) regime. In this regime, the
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condensate cloud is flattened out like a pancake (extremely oblate) and the z degree of
freedom is effectively frozen. Physically, this corresponds to a situation where the condensate
is rapidly rotating so that centrifugal spreading is significant, and where the longitudinal
trapping is strong (~ωz � g%(0)) [33]. In such circumstances it is appropriate to assume that
the longitudinal motion is described by the ground state of the z-confinement, so that the
condensate wavefunction is of the form

Ψ(r) =
1

(πl2z)
1
4

exp

(
− z

2

2l2z

)
Φ(ρ), (2.4)

where lz =
√

~/Mωz is the longitudinal harmonic oscillator length.1 With this prescription
for Ψ(r) we have defined a two-dimensional condensate wavefunction Φ(ρ), which only
depends on the coordinates in the rotating plane ρ = (x, y). To ensure that the total
particle number constraint continues to be satisfied, the two-dimensional condensate density
n(ρ) = |Φ(ρ)|2 must be normalised so that

∫
dρ n(ρ) = N .

Using this ansatz for Ψ(r) we may recast the expression for the condensate energy in quasi-2D.
Substituting Equation (2.4) into Equation (2.1) and integrating over z, we obtain

E0[Φ] =
1

2
N~ωz +

∫
dρ Φ(ρ)∗ H̄ ′0 Φ(ρ) (2.5)

for the single particle energy contribution, with an effective two-dimensional single-particle
Hamiltonian given by

H̄ ′0 = − 1

2M
(i~∇⊥ + ΩM ẑ× ρ)2 +

1

2
M(ω2

ρ − Ω2)ρ2. (2.6)

Similarly, for the interaction energy contribution we obtain:

Eint[Φ] =
1

2
g2D

∫
dρn(ρ)2, (2.7)

where we have introduced a modified two-dimensional coupling strength g2D = g/
√

2πlz.

The next step in the vortex lattice analysis is to make some assumptions about the form
of Φ(ρ) so that we may further reduce Equations (2.5) and (2.7) above. We shall consider
these assumptions in detail in the following section.

2.2 Ansatz for the vortex lattice ground state

Thus far we have not made any specifications about vortices in the condensate. In this section,
we shall develop an ansatz for the two-dimensional ground state condensate wavefunction
which assumes that vortices exist on the sites of a lattice. To make the problem analytically
tractable we must rely on three assumptions: firstly that the condensate is in the fast-rotating

1See [34] for a semi-rigorous justification based on a multiple-scale analysis of the GP equation.
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limit, secondly that the interactions are relatively weak, and thirdly that the vortex lattice is
regular and infinite in extent (see Section 1.6).

2.2.1 The lowest Landau level (LLL) state and a link to vortices

We begin by considering the fast-rotating limit where Ω→ ωρ. This is the point at which the
centrifugal spreading due to rotation almost overwhelms the confinement due to the radial trap.
In this limit, the single-particle Hamiltonian in quasi-2D tends to −(i~∇⊥+ ΩM ẑ×ρ)2/2M ,
up to a constant. The eigenfunctions of this Hamiltonian are well known: they are the
Landau level orbitals um,n(x, y) with corresponding eigenenergies εn = ~Ω(n+ 1/2). The n
quantum number labels the so-called Landau level, and may take on any non-negative integer
value. Each Landau level is infinitely degenerate since εn does not depend on m (which also
takes on non-negative integer values).

Although the Landau level orbitals do not necessarily form a complete basis for the full
quasi-2D Hamiltonian H̄ ′0 + V̄ , if we assume that the interactions are weak then they are a
good approximate basis choice [35]. In searching for the ground state of the condensate, we
shall therefore assume that it is adequately described by a superposition of n = 0 Landau
level orbitals. This is called a lowest Landau level (LLL) state. Consequently, we may write
the two-dimensional ground state wavefunction of the condensate as:

Φ(ρ) =
∞∑
m=0

cmum,0(ρ) =
∞∑
m=0

cm√
2πm!

(
x+ iy

lρ

)m
exp

(
−x

2 + y2

2l2ρ

)
, (2.8)

where the right-hand side follows from the explicit form of um,0(x, y). The length scale

lρ =
√

~/MΩ is effectively equal to the transverse trap length since Ω→ ωρ.

At this point it turns out to be convenient to convert to a complex number representation,
rather than working with the components of a two-dimensional vector. To this end, we map
ρ = xx̂ + yŷ to the complex number w = x+ iy. In the complex number representation, the
ground state wavefunction of Equation (2.8) may be written as

Φ(w) = f(w) exp

(
−|w|

2

2l2ρ

)
(2.9)

where f is an analytic function of w. With this definition, the coefficients of the superposition
cm have been absorbed into f . This is not an issue however, because we shall never need to
work with these coefficients directly. Instead, we may fully specify f in terms of its roots
since it is an analytic function. In fact, it is possible to show that each root specifies the
location of a vortex core at the corresponding x and y coordinates in the condensate [31].
Thus we may alternatively specify the ground state by giving the locations of all of the vortex
cores.

With this realisation, it is clear that a vortex lattice ground state corresponds to a situation
where the roots of f lie on a lattice. Our next step will therefore be to construct an analytic
function with roots that satisfy this property. Fortunately, there is a well-studied function in
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complex analysis which will be useful here: the Jacobi theta function θ1(z, ς). The roots of
θ1(z, ς) are able to describe any regular lattice up to a rotation by making an appropriate
choice for the parameter ς. This means that f may be expressed in terms of θ1 to obtain
a vortex lattice ground state wavefunction. However in order to make this connection, we
must first introduce a way to describe the lattice mathematically.

2.2.2 Mathematical description of the vortex lattice

A two-dimensional lattice may be fully specified by a pair of basis vectors: b1 and b2. The
points of the lattice are obtained from these basis vectors by constructing all possible linear
combinations of the form m1b1 + m2b2 where m1 and m2 are integers. Each one of these
linear combinations is called a lattice vector.

In general, four real parameters are required to fully specify a lattice: two real components for
each of the two basis vectors. However for our current purposes one of these parameters may
be fixed, since we shall not distinguish between lattices which are equivalent up to a rotation.
This is justified because the Hamiltonian which describes the non-dipolar condensate is
cylindrically symmetric. In order to fix one of the parameters, we shall choose to orient the
first basis vector b1 along the x-axis. This choice of orientation will turn out to be convenient
later on in making a connection with the roots of the Jacobi theta function.

The three remaining parameters we shall use to describe the lattice are depicted in Figure
2.1, along with the lattice basis vectors. The first basis vector b1 is specified solely in terms
of its magnitude, which is denoted by the parameter b1, since its direction is fixed along
x̂. The second basis vector b2 is defined with reference to the first basis vector through a
rotation and rescaling. This requires two additional parameters: a rotation angle η and a
scaling factor τ . Writing out the basis vectors explicitly in terms of the parameters b1, τ and
η, we have that b1 = b1x̂ and b2 = τb1(cos η x̂ + sin η ŷ).

The other parameter that appears in Figure 2.1 is the area of the unit cell, given by
vc = b21τ sin η. This parameter is redundant in specifying the lattice because it depends on
the other parameters: b1, τ and η. However, it is useful to mention it because it appears in a
number of places in the subsequent analysis.

Another useful concept regarding our mathematical description of the vortex lattice is the
reciprocal lattice. It is needed to represent a function which is defined on a lattice as a Fourier
series. The reciprocal lattice is obtained from the original lattice by a transformation of the
lattice basis vectors. We shall denote the basis vectors of the reciprocal lattice as q1 and
q2. They are obtained from b1 and b2 as follows: q1 = 2π

vc
b2 × ẑ = 2πb1τ

vc
(sin η x̂ − cos η ŷ)

and q2 = 2π
vc

ẑ × b1 = 2πb1
vc

ŷ. As for the case of the original lattice, the reciprocal lattice
is constructed from its basis vectors by considering all linear combinations of the form
m1q1 +m2q2 where m1 and m2 are integers. Each one of these linear combinations is called
a reciprocal lattice vector, which we shall denote in general by q.
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b2

b1
η

b1

τb1

vc

b2

b1
η

τb1

Figure 2.1: Illustration of the lattice basis vectors and the lattice parameters.

2.2.3 Derivation of the vortex lattice ground state

Now that we have a way to describe lattices mathematically, we can continue the derivation
of the vortex lattice ground state. We previously indicated that it would be possible to
map the points of the vortex lattice (or equivalently the roots of f) onto the roots of the
Jacobi theta function. In the language we have just developed, the roots of the Jacobi theta
function θ1(z, ς) correspond to a lattice with b1 = 1 and ς = eiπτe

iη
. This would describe an

arbitrary lattice, if the magnitude of the first basis vector b1 were not fixed to unity. To
reintroduce an arbitrary magnitude, we divide the first argument of θ1 by b1. Then f may
be expressed in terms of θ1 by writing

f(w) = C
1
2h(w/b1)θ1(w/b1, ς), (2.10)

where h is an entire function without any roots and C is a normalisation factor. Putting
this into Equation (2.9) yields the following expression for the two-dimensional condensate
density:

n(ρ) = C |h(w/b1)|2 |θ1(w/b1, ς)|2 exp

(
−|w|

2

l2ρ

)
. (2.11)

Motivated by the fact that the roots of |θ1(w/b1, ς)|2 lie on a lattice, we shall attempt to
express this function as a Fourier series. Using the Laurent series definition of θ1, it is possible
to show, after substantial manipulation, that

|θ1(w/b1, ς)|2 = e2πy
2/vc
∑
q

gqeiq·ρ; gq =
(−1)m1+m2e−vcq

2/8π

√
τ sin η

. (2.12)

The factor
∑

q gqeiq·ρ is a Fourier series defined on the vortex lattice. Here we are using a
shorthand notation in which a sum over q represents a sum over all of the reciprocal lattice
vectors. In keeping with the notation used previously, a particular reciprocal lattice vector
is denoted by q = m1q1 +m2q2. This means that the sum over q is really a sum over the
integers m1 and m2.
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The final key step in the derivation is to make use of the cylindrical symmetry of the
condensate cloud. We know that the condensate cloud must be cylindrically symmetric
because the Hamiltonian has cylindrical symmetry. Enforcing this condition, it is possible to
show that h(w) = exp(πw2/2τ sin η).

Combining these results and performing normalisation, we finally have that

n(ρ) =
N

πσ2
e−

ρ2

σ2 g(ρ). (2.13)

In other words, the two-dimensional condensate density is the product of a Gaussian envelope
and a function g(ρ) =

∑
q ḡqeiq·ρ which is periodic on the vortex lattice. The Fourier

coefficients of g(ρ) are rescaled compared to those derived in Equation (2.12) so that

ḡq = gq/
∑

v gve−
σ2v2

4 . The radial extent of the condensate cloud is quantified by the
length-scale σ = (l−2ρ − πv−1c )−1/2 which is related to the number of vortices in the system.

2.3 Evaluation of the energy in the vortex lattice ground

state

Now that we have an ansatz for the vortex lattice ground state, we can finally calculate the
energy of the condensate as a function of the lattice parameters. Using the fact that Φ(ρ) is
in the LLL, the single-particle energy contribution simplifies to

E0[n] = N(~Ω +
1

2
~ωz) +

~(ω2
ρ − Ω2)

2Ωl2ρ

〈
ρ2
〉

(2.14)

where 〈ρ2〉 ≡
∫
dρρ2n(ρ). Substituting the explicit expression for n(ρ) from Equation (2.13),

we find that 〈
ρ2
〉

= Nσ2
∑
q

ḡqe−
σ2q2

4

(
1− σ2q2

4

)
≈ Nσ2,

where the approximate result follows in the limit of large vortex number: σ2q2 � 1. In
this limit, the single-particle energy contribution is therefore independent of the lattice
parameters.

Next we evaluate the interaction energy contribution, which from Equation (2.7), may be
rewritten in the following form:

Eint[n] =
N2g2D
2πσ2

I[n]. (2.15)

Here we have defined I[n] ≡ (πσ2/N2)
∫
dρn(ρ)2; a dimensionless analogue of the interaction

energy contribution. Substituting the ansatz for the vortex lattice ground state from
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Equation (2.13), we find that

I(τ, η) =
1

2

∑
q,v

ḡqḡve−
σ2|q+v|2

8 . (2.16)

This quantity depends on τ and η implicitly through its dependence on the reciprocal lattice
vectors. If we again consider the limit of large vortex number where σ2q2 � 1, it is possible
to simplify this expression quite significantly. In fact, one may assume that the exponential

factor e−
σ2|q+v|2

8 is so sharply peaked at q = −v that it may be approximated by a Kronecker
delta: δq,−v. This collapses the double sum over q and v to a single sum over q, which is
much simpler to evaluate:

I(τ, η) ≈ 1

2

∑
q

(ḡq)2

=
∞∑

m1,m2=−∞

1

2
exp

[
π

(
2m1m2 cot η −m2

1τ csc η − m2
2 csc η

τ

)]
.

(2.17)

With these results, we now have an expression for the total condensate energy E(τ, η) =
E0 + Eint(τ, η) in the vortex lattice ground state as a function of the lattice parameters τ
and η. In the following section, we shall use these results to minimise E(τ, η) and thereby
determine the optimal vortex lattice geometry.

2.4 Optimal vortex lattice geometry

Until now, our efforts have been focussed on completing the first two steps of the variational
method: developing an ansatz for the vortex lattice ground state, and substituting it into
the energy functional. In this section we shall complete the final step: minimisation of the
energy with respect to the variational parameters τ and η.

To begin, we note that only the interaction energy contribution depends on τ and η; the
single-particle energy contribution is effectively a constant. Consequently, we may minimise
the total energy E(τ, η) = E0 + Eint(τ, η) with respect to τ and η by minimising Eint(τ, η)
alone. Recalling the definition of Eint(τ, η) given in Equation (2.15), we see that minimisation
of Eint(τ, η) is equivalent to minimisation of I(τ, η) so long as the constant of proportionality
N2g2D/2πσ

2 is positive. We may safely assume that this is the case because a negative
constant of proportionality implies that g is negative, and this corresponds to a situation
where the condensate is highly susceptible to collapse [36].

In order to minimise I(τ, η) as defined in Equation (2.17), we must resort to a numerical
treatment. This requires that we cut off the sums over m1 and m2 at some upper and lower
bound. Here we shall choose the upper and lower bounds to be at +M and −M respectively,
with M set to 15. This ensures that I(τ, η) is accurate to machine precision for values of τ
and η greater than about 0.05. If we wanted to explore regions in which τ or η is less than
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Figure 2.2: Contour plot of I(τ, η) — a dimensionless analogue of the interaction energy. The
white areas are regions where I(τ, η) is greater than the cut-off value of 0.6. The purple areas
correspond to regions where I(τ, η) approaches its minimum value. Multiple local minima are
visible, although they become difficult to see in the lower left-hand region of the plot. The three
minima labelled by red numbers are mentioned in the text.

0.05, we would need to increase M above 15 to include higher frequency terms in the Fourier
series. Fortunately, we can reasonably exclude these regions from our analysis because they
correspond to an unphysical situation where the vortex lattice begins to collapse onto a line.

It is illustrative to perform the minimisation of I(τ, η) graphically, by generating a contour
plot of I(τ, η) as a function of τ and η. The result is shown in Figure 2.2. In this plot, the
dark purple shading corresponds to regions where I(τ, η) approaches its minimum value.
The white areas correspond to regions where I(τ, η) is greater than the cut-off value, which
is in this case set to 0.6. We have chosen to cut off the plot at this value to focus on the
details around the minima and to avoid capturing regions where I(τ, η) diverges.

Looking at Figure 2.2, we see that there are multiple local minima in the region plotted. A
small selection of these minima are labelled by red numbers. Their (τ, η) coordinates are as
follows:

1 : (1.0000 . . . , 1.0472 . . . ) =
(

1,
π

3

)
2 : (0.5773 . . . , 0.5235 . . . ) =

(
1√
3
,
π

6

)
3 : (0.6546 . . . , 0.1901 . . . ) =

(√
3√
7
, arcsin

(√
3√
7

)
− π

6

)
... etc.
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Triangular

(τ = 1, η = π
3 )

Square

(τ = 1, η = π
2 )

Rectangular

(τ < 1, η = π
2 )

Parallelogrammic

Figure 2.3: A lattice may be classified as one of four types according to the geometry of the unit cell.
The triangular, square and rectangular lattices are all special cases of the parallelogrammic lattice.
For the triangular, square and rectangular lattice, we have given the corresponding (τ, η) values
in the so-called standard parametrisation. The (τ, η) values are omitted for the parallelogrammic
lattice because they are not easily specified.

Since we would like to determine the global minimum, we should check all of the local minima
to determine which has the smallest value. Performing this check numerically, we find that
each local minimum has the same value of I equal to 0.5797 . . . . It would therefore appear
that there are multiple valid solutions to the minimisation problem! However upon more
careful consideration, we may show that each of these solutions in fact corresponds to the
same type of lattice; just at a different scale and orientation.

The solution labelled ‘1’ in the list above is what we shall call the standard parametrisation of
the triangular lattice. It is illustrated in Figure 2.3, along with the standard parametrisations
of the three other types of lattice: square, rectangular and parallelogrammic. In general, the
standard parametrisation is defined to be the one for which τ is closest to 1. Alternative
parametrisations of the same lattice have smaller values of τ compared to the standard one,
and correspond to trivial rotations and rescalings of the lattice. For example, the second
solution in the list above is an equally valid parametrisation of the triangular lattice. It
can be obtained from the standard parametrisation (τ, η) = (1, π

3
) by applying the following

transformation:

1. Choose an alternative pair of basis vectors: b′1 = b1 and b′2 = b1 + b2.

2. Rotate and rescale the alternative basis vectors so that b′2 is mapped to x̂. This means
we must rotate clockwise through an angle of π

6
and rescale by 1√

3
.

3. Calculate the new lattice parameters from the transformed basis vectors. We find
that τ = 1√

3
and η = π

6
, which proves that solution 2 is related to the standard

parametrisation (solution 1) by a trivial transformation.

By repeating this procedure with different combinations of basis vectors, we may relate all
of the solutions seen in Figure 2.2 to the standard parametrisation of the triangular lattice.
Hence we conclude that a triangular vortex lattice geometry is favoured in non-dipolar
BECs.2

2A visualisation of the condensate density for the triangular lattice geometry is shown on the front cover
of this thesis (top-left circle).
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2.5 Summary

We have verified that a triangular vortex lattice geometry is always favoured in non-dipolar
BECs using our variational method. Of course, this was to be expected based on the results
of numerous experiments and previous theoretical studies, as referenced in Section 1.5. It
is interesting to note, however, that the triangular lattice geometry is not significantly
favoured over other possible lattice geometries. In particular, the energy corresponding to
the square lattice geometry at τ = 1, η = π

2
(which is a saddle point in Figure 2.2) is only

1.8% larger than that of the triangular lattice geometry. It is therefore conceivable that the
energy minimum may shift to a non-triangular lattice geometry if the functional form of the
interaction energy contribution is somehow altered. In order to explore this idea further,
it will be interesting to investigate vortex lattices in BECs with different (i.e. non-contact)
interactions. We shall begin along this path in the next chapter, by extending our analysis
to consider vortex lattices in dipolar BECs.



Chapter 3

Vortex lattices in dipolar BECs with
on-axis polarisation

In the previous chapter, we showed using a variational approach, that triangular vortex
lattices are always favoured in non-dipolar BECs. It is not possible to observe other vortex
lattice geometries, at least over the range of parameters that satisfy our assumptions. In
this respect, non-dipolar BECs are not particularly interesting. In this chapter, we shall
therefore turn our attention to dipolar BECs, in the hope that they may be able to support
other vortex lattice geometries, such as square, rectangular and parallelogrammic. For now,
we shall confine our attention to a specific class of dipolar BECs in which the dipoles are
aligned along the axis of rotation — the z-axis for our choice of coordinate system. This is
the so-called case of on-axis polarisation. Once we incorporate the effect of the dipoles into
our theoretical description of the BEC, the vortex lattice analysis will proceed in much the
same way as for the non-dipolar case. In fact, we shall refer to a number of results from the
previous chapter to avoid duplication of work.

3.1 Modifying the two-particle pseudo-potential

When we considered non-dipolar BECs in the previous chapter, the two-particle pseudo-
potential was simply equal to the contact interaction potential, Ucont(r). However for the case
of dipolar BECs, we must modify the two-particle pseudo-potential to include the dipolar
interaction potential, Udd(r), so that

V (r) = Ucont(r) + Udd(r). (3.1)

This is the only modification to the theory that is required to account for the effect of the
dipoles.

19
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In this chapter, Udd(r) adopts a simpler form compared to that of Equation (1.5), since we
are assuming on-axis polarisation. Setting p̂ = ẑ, we find that

Udd(r) =
Cdd

4π

1− 3 cos2 θ

r3
, (3.2)

where the vector r is expressed here in spherical coordinates (r, θ, φ). It is interesting to
note that this expression does not depend on the azimuthal angle φ. This implies that the
cylindrical symmetry of the Hamiltonian H ′0 + V is maintained.

As a consequence of including Udd(r) in the two-particle pseudo-potential, we now have an
additional contribution to the energy functional which was defined generally in Equation (2.1).
This additional contribution is given by

Edd[Ψ] =
1

2

∫
dr1

∫
dr2 %(r1)Udd(r1 − r2) %(r2), (3.3)

which we shall call the dipolar interaction energy contribution. Adding this to the single-
particle and contact interaction energy contributions defined in Equations (2.1) and (2.14)
respectively, gives the total energy in the rotating frame for a dipolar BEC:

E ′[Ψ] = E ′0[Ψ] + Econt[Ψ] + Edd[Ψ]. (3.4)

With this result, we may now embark on the vortex lattice analysis. Recalling the procedure
established for the non-dipolar case, our first task will be to evaluate the condensate energy
given above in the quasi-2D vortex lattice ground state. Since the single-particle and contact
interaction energy contributions are unchanged from the non-dipolar case, we may use the
expressions for them derived in Chapter 2. All that remains then, is to perform the calculation
for Edd[Ψ]. This is by no means a simple task due to the complicated mathematical form
of the dipolar interaction potential. We shall consider this in detail in the following two
sections.

3.2 The dipolar interaction energy contribution in quasi-

2D

In Chapter 2, we were able to evaluate the single-particle and contact interaction energy
contributions in quasi-2D by substituting the quasi-2D condensate wavefunction and per-
forming the integrals over z. This yielded an expression for the condensate energy which was
dependent only on the two-dimensional condensate wavefunction Φ(ρ) — any reference to
the z-coordinate was eliminated. If we attempt to follow the same process for the dipolar
interaction energy contribution, we quickly encounter a problem. The integrals over z1
and z2 are not tractable, which means that it is not possible to eliminate references to the
z-coordinates analytically. As a result, it appears as if there is no way to continue with the
analysis analytically. However we need not give up yet. One alternative, which we shall now
consider, is to work in reciprocal space rather than real space.
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We may rewrite the dipolar interaction energy contribution in reciprocal space by applying
the Fourier convolution theorem to the definition given in Equation (3.3). Thus we find that

Edd[Ψ] =
1

2

1

(2π)3

∫
dk %̃(k)%̃(−k)Ũdd(k), (3.5)

where k is a vector in reciprocal space and an overset tilde denotes the Fourier transform:
f̃(k) ≡

∫
dr f(r)e−ik·r (see reference [37]). This expression for Edd[Ψ] already appears to

be a simplification, since the double integral over real space has been reduced to a single
integral over reciprocal space.

In order to evaluate Equation (3.5) in quasi-2D, we substitute the Fourier transform of the
quasi-2D condensate density: %̃(k) = e−k

2
z l

2
z/4ñ(k⊥). This expression for %̃(k) follows from

the definition of the quasi-2D condensate wavefunction given in Equation (2.4). Hence we
find that

Edd[Φ] =
1

2

1

(2π)2

∫
dk⊥ ñ(k⊥)ñ(−k⊥)Ũ2D

dd (k⊥), (3.6)

where

Ũ2D
dd (k⊥) ≡ 1

2π

∫ ∞
−∞

dkz e−k
2
z l

2
z/2Ũdd(k). (3.7)

Here we note that k⊥ = kxx̂ + kyŷ is the projection of k onto the xy-plane — it is the
reciprocal space analogue of ρ.

The function Ũ2D
dd (k⊥) defined above may be thought of as an effective dipolar interaction

potential in two-dimensional reciprocal space. It contains the integral over kz, which we
would like to evaluate so that we may remove any lingering references to the third spatial
dimension. It is in fact possible to perform this integral using special functions. Substituting

the Fourier transform of the dipolar interaction potential Ũdd(k) = Cdd

(
k̂2z − 1/3

)
, we find

that

Ũ2D
dd (k⊥) =

Cdd

3
√

2πlz

(
2− 3

√
2π

2
k⊥lze

k2⊥l
2
z

2 erfc

(
k⊥lz√

2

))
, (3.8)

where erfc(·) is the complementary error function.

3.3 Evaluation of the dipolar interaction energy con-

tribution in the vortex lattice ground state

Now that we have derived an expression for the dipolar interaction energy in quasi-2D,
we may evaluate the energy assuming that the condensate is in the vortex lattice ground
state. Performing the Fourier transform on the vortex lattice condensate density specified in
Equation (2.13), we have that

ñ(k⊥) = N
∑
q

ḡqe−
σ2

4
|q−k⊥|2 . (3.9)
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This enters into the expression for the dipolar interaction energy as a product ñ(k⊥)ñ(−k⊥),
which may be written as:

N2
∑
q,v

ḡqḡv exp

(
−σ

2

4

(
q2 + v2 + 2(q− v) · k⊥ + 2k2

⊥
))

.

Putting this into Equation (3.6) and bringing the sums over the reciprocal lattice vectors
outside the integral, we find that

Edd(τ, η) =
N2Cdd

3(2π)
3
2 l3z

∑
q,v

ḡqḡve−
σ2

4
(q2+v2)A(v − q), (3.10)

where

A(q) ≡ 1

2π

∫
du e

−σ
2

l2z

(
u2+ 1√

2
lzq·u

) [
2− 3

√
πueuerfc(u)

]
. (3.11)

The integral defining A(q) is effectively an integral over k⊥, however it has been re-expressed
here in terms of the dimensionless vector u ≡ k⊥lz/

√
2. Writing out the integral explicitly in

polar coordinates u ≡ (ux + uy)
1
2 and φu ≡ atan2(uy, ux), we have:

A(q) =
1

2π

∫ ∞
0

du e
−σ

2

l2z
u2 [

2u− 3
√
πu2euerfc(u)

] ∫ 2π

0

dφu e
σ2q√
2lz

u cosφu

=

∫ ∞
0

du e
−σ

2

l2z
u2 [

2u− 3
√
πu2euerfc(u)

]
I0

(
σ2qy√

2lz

)
where In(·) is the modified Bessel function of the first kind. At this point, the integral may
be separated into two terms A1(q) + A2(q), by expanding the factor in the square brackets.
The first term has a simple solution:

A1(q) ≡ 2

∫ ∞
0

du u e
−σ

2

l2z
u2

I0

(
σ2qu√

2lz

)
=

(
lz
σ

)2

e
σ2q2

8 . (3.12)

However the second term given by

A2(q) = 3
√
π

∫ ∞
0

du u2e
−
(
σ2

l2z
−1

)
u2

erfc(u) I0

(
σ2qu√

2lz

)
(3.13)

does not appear to be tractable. Whilst this does present a significant problem, we shall not
concern ourselves with it at the moment. For now, we shall consider A2(q) to be an abstract
function.
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Returning to the expression for the dipolar interaction energy given in Equation (3.10), we
may now substitute our simplified result for A1(q) to find that

Edd(τ, η) =
2N2Cdd

3(2π)
3
2 lzσ2

I(τ, η) +
N2Cdd

3(2π)
3
2 l3z
W(τ, η), (3.14)

where I(τ, η) is as defined in Equation (2.16) and

W(τ, η) ≡
∑
q,v

ḡqḡve−
σ2

4
(q2+v2)A2(v − q). (3.15)

This is an important result because the energy has been separated into two distinct contri-
butions: a local contribution which is proportional to I(τ, η) and a non-local contribution
which is proportional to W(τ, η). The local contribution is so-named because it may be
attributed to the local s-wave part of the dipolar interaction potential. We are able to
make this deduction because the contribution is of the same form as the contact interaction
energy contribution, albeit with a different pre-factor. Continuing this line of reasoning, the
non-local contribution must then be related to the remaining non-s-wave part of the dipolar
interaction potential — the non-local part of the interaction.

In principle, we now have everything we need to calculate the dipolar interaction energy as a
function of the lattice parameters. We already know how to deal with the local contribution
since it involves I(τ, η), which we saw in Chapter 2. However the analogous function for
the non-local contribution, W(τ, η), is new to us and will turn out to present a number of
difficulties. The main difficulty we shall encounter is to do with the integral that defines
A2(q), which we flagged as being problematic earlier on. Since this integral is not tractable,
it must be evaluated numerically. This in itself is not an issue, however unfortunately the
integral has poor convergence properties, which means that it takes an unreasonable amount
of time to obtain an accurate solution. In order to get around problems such as this one, we
must think of a cleverer way to implement W(τ, η) numerically. This will be the subject of
the following section.

3.4 Solution to numerical issues

There are three issues regarding the numerical evaluation of W(τ, η) which we would like to
overcome. They are:

1. Poor convergence of the integral specifying A2(v − q).
It takes of order seconds to obtain a convergent solution to the integral using the
NIntegrate function in Mathematica. This is an excessive amount of time because we
must evaluate the same integral for many values of v − q.

2. Prevalence of extremely large and extremely small numbers.
For the parameter ranges we shall consider, A2(v−q) can be as large as 10+600000 whilst

the factor e−
σ2

4
(v2+q2) is as small as 10−600000. It would be beneficial if we could avoid
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working with such large numbers, because the product e−
σ2

4
(v2+q2)A2(v− q) (which we

ultimately need to calculate) is in fact a reasonably-sized number.

3. An overabundance of terms in the sum over q and v.
The double sum over the reciprocal lattice vectors requires calculating an unwieldy
number of terms. Ideally, we would like to make a similar approximation to the one
we made in the calculation of I(τ, η) where the double sum was collapsed by setting
q = −v.

Addressing each of these issues in detail is rather tedious and not particularly illuminating,
so we shall only discuss some of the key points here.

In order to resolve the first issue, we essentially break up the difficult integral into a series
of simpler integrals, each of which is analytically solvable. This is done by expressing the
complementary error function, which appears in the integrand, as a power series:

erfc(u) = 1− 2√
π

∞∑
n=0

(−1)nu2n+1

n!(2n+ 1)
. (3.16)

We then bring the sum over n outside the integral and do the resultant integral to yield
an expression for A2(v − q) of the form:

∑∞
n=0 an(v − q). Of course, this series is not

necessarily guaranteed to converge, because it is not always appropriate to reverse the order
of summation and integration. Fortunately there are no issues with convergence in this case.
In fact we find that the series itself has excellent convergence properties: it may be truncated
at small n whilst still maintaining a high level of accuracy, which should make fast evaluation
possible.

Addressing the second issue, regarding extremely large and extremely small numbers, is

relatively simple. Rather than working with A2(v − q) and e−
σ2

4
(v2+q2) individually, we

consider the product e−
σ2

4
(v2+q2)A2(v − q) analytically as a single object. Using the power

series expression for A2(v−q), it is possible to cancel out e−
σ2

4
(v2+q2) with other factors in the

terms of the series. One then obtains a new power series for the product e−
σ2

4
(v2+q2)A2(v−q),

where each term in the series may be evaluated at machine precision.

The final issue is resolved by collapsing the double sum over q and v, assuming that q = −v.
This approximation is valid in the limit σ2q2 � 1, which is true in the limit of large vortex
number. In order to prove that this is a reasonable approximation to make, one can evaluate

e−
σ2

4
(v2+q2)A2(v−q) as indicated above, and observe that the resulting expression is greatest

in magnitude when q = −v. The terms in the sum for which e−
σ2

4
(v2+q2)A2(v−q) is greatest

in magnitude are the most dominant contributions, however the smaller terms for which
q 6= −v may reasonably be neglected.

Combining these resolutions, we find that

W(τ, η) ≈
∑
q

(ḡq)2
(

e−
σ2q2

2 Aa2(2q) + e−
σ2q2

2 Ab2(2q)

)
(3.17)
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where

e−
σ2q2

2 Aa2(2q) =
3π

8 (β2 − 1)
5
2

e
− (β2−2)q2σ2

4(β2−1)

×
[
β4l2zq

2 I1

(
β4l2zq

2

4− 4β2

)
−
(
2β2 + β4l2zq

2 − 2
)
I0

(
β4l2zq

2

4− 4β2

)]
and

e−
σ2q2

2 Ab2(2q) = 3 e
− q2σ2

2(β2−1)

∞∑
n=0

(−1)n(n+ 1)

(β2 − 1)2+n(2n+ 1)
L1+n

(
β4l2zq

2

2− 2β2

)
.

Here, β ≡ σ/lz and Ln(·) is the n-th Laguerre polynomial. This series expression for W(τ, η)
is about 300 times faster to evaluate than if we were to numerically integrate A2(2q).

3.5 Optimal vortex lattice geometry

3.5.1 Preliminary setup

With the results of the previous section, we now have a computationally efficient implemen-
tation of the condensate energy in the vortex lattice ground state. This means that it is now
feasible, from a computational perspective, to numerically minimise the condensate energy,
E(τ, η) = E0 + Eint(τ, η), with respect to τ and η to determine the optimal vortex lattice
geometry. In minimising the condensate energy we need only consider the interaction energy
contribution, Eint(τ, η), since the single-particle contribution, E0, does not depend on τ and
η.

Adding together the expressions for Econt(τ, η) and Edd(τ, η), given in Equations (2.15) and
(3.14) respectively, we have that the interaction energy contribution is given by:

Eint(τ, η) =
N2Cdd

3(2π)
3
2 l3z

[(
2 +

1

εdd

)(
lz
σ

)2

I(τ, η) +W(τ, η)

]
. (3.18)

Here we have introduced the parameter εdd ≡ Cdd/3g which quantifies the relative strength
of the dipolar and contact interactions. In the work that follows, we shall assume Cdd > 0
so that the factor outside the square brackets is also positive. This allows us to define a
dimensionless analogue of the interaction energy contribution:

Ēint(τ, η) ≡
(

2 +
1

εdd

)(
lz
σ

)2

I(τ, η) +W(τ, η), (3.19)

which may be minimised in place of Eint(τ, η). We note that the case where Cdd < 0 requires
more careful treatment, since the sign of Ēint(τ, η) becomes opposite to the sign of Eint(τ, η),
meaning that the maxima and minima are inverted.
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vc/πl
2
ρ lρ/lz σ/lz

(a) 1.01908 40 292.331 . . .
(b) 1.01908 80 584.662 . . .

Table 3.1: Relationships between the length scales lρ, lz and σ, for the two cases (a) and (b) which
we shall consider in the minimisation of the condensate energy. Note that vc = πσ2/(lρσ

2 − 1).

The notation that we have adopted for Ēint(τ, η) makes it clear that there is a dependence
on τ and η. However it conceals the fact that there is also a dependence on four additional
parameters: εdd, lρ, lz and σ. Whilst it is likely that the optimal vortex lattice geometry
depends on each of these four additional parameters in some way, it is only practical from a
computational perspective to allow one to vary at a time. Since there are strict conditions on
the length scales in the problem, we shall opt to fix lρ, lz and σ, whilst allowing εdd to vary.

In fixing the length scales, we must satisfy two criteria which are related to our previous
assumptions:

(i) vc/πl
2
ρ → 1+: this ensures that the condensate is in the fast-rotating limit, where a

large number of vortices are present.

(ii) lρ/lz � 1: this corresponds to a highly oblate trap, and ensures that the condensate is
in the quasi-2D limit.

In order to satisfy the first criterion, we shall arbitrarily set vc/πl
2
ρ = 1.01908 throughout

our analysis. For the second criterion we shall consider two possibilities: (a) lρ/lz = 40 and
(b) lρ/lz = 80. By fixing lρ in addition to criteria (i) and (ii), we may fully specify all of the
length scales in the problem. A summary of the relationships between the length scales is
given in Table 3.1 for the two cases we shall consider.

3.5.2 Results and discussion

We perform the numerical minimisation over a range of values of εdd for both sets of length
scales specified in Table 3.1. The results are shown in Figures 3.1(a) and (b), for the length
scales in rows (a) and (b) of the table, respectively. In both figures, the optimal values of τ
and η are plotted against 1/εdd

1. The optimal value of τ is represented by a solid line with
reference to the scale on the left vertical axis, while the optimal value of η is represented
by a dotted line with reference to the scale on the right vertical axis. Taken together, the
optimal values of τ and η describe the optimal vortex lattice geometry.

By comparing the optimal values of τ and η to the standard lattice parametrisations given
in Figure 2.3, we are able to classify the geometry of the vortex lattice. For example, at the
point 1/εdd = −1.82 in Figure 3.1(a), we find that a square lattice is favourable since the
optimal values of τ and η at that point are 1 and π

2
respectively. Continuing in this way, we

1We plot the optimal lattice parameters against 1/εdd rather than εdd itself to avoid a divergence at
εdd = 0.
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see that three types of lattice may occur depending on the value of 1/εdd: triangular, square
or rectangular.2 Each of these lattice geometries occurs in a distinct region of the phase
space, which we indicate by coloured shading in the figure. Comparing Figures 3.1(a) and (b),
we see that the relative size of each region is the same for both sets of length scales. There is
however an overall translation and scaling difference between the two cases: the regions in
Figure 3.1(b) are contracted and shifted to the left compared to those in Figure 3.1(a). A
more accurate description of the phase regions is given in Table 3.2 in terms of inequalities.

In addition to the three colour-shaded regions, there is also a grey-shaded region for which
the condensate is in the so-called collapse phase. In the collapse phase, the optimal value of
τ tends to zero and our vortex lattice analysis begins to break down. Physically, this phase
corresponds to a situation where the vortices are arranged in densely-packed lines, with the
spacing between the lines being larger than the extent of the condensate in the xy-plane.
Since the unit cell of the lattice extends beyond the boundaries of the condensate in this
situation, we say that the vortex lattice has “collapsed”.

When the system enters the collapse phase, there are also signs from a computational
perspective that our analysis becomes invalid. Since τ approaches zero in this phase, our
expression for Ēint(τ, η) becomes inaccurate because we only included enough terms in the
Fourier decomposition to consider values of τ greater than about 0.05 (we cut off the sums
at M = 15). Incidentally, this is why we do not see τ approaching zero in the grey collapse
region in Figures 3.1(a) and (b) — because we constrained the minimisation to values of τ
greater than 0.05, where our expression for Ēint(τ, η) is reliable. In order to approach τ = 0,
we would need to include a near-infinite number of terms (M � 15) in our expression for
Ēint(τ, η), which is computationally impractical. This poor convergence is indicative of a
problem with the theory at the point τ = 0.

Apart from the stability of the vortex lattice, we may also assess the stability of the condensate
itself by looking at the sign of Eint(τ, η). If Eint(τ, η) is negative, then we shall regard the
condensate as being prone to collapse. This is only an approximate way of assessing stability,
but it will be good enough for our purposes3. The region of phase space for which Eint(τ, η)
is negative is the area to the left of the red line in Figures 3.1(a) and (b). Interestingly, we
see that Eint(τ, η) becomes negative at roughly the value of 1/εdd where the optimal value
of τ approaches zero. This suggests that there is a strong link between the collapse of the
condensate and the collapse of the vortex lattice.

3.6 Summary

We have analysed vortex lattice geometry in dipolar BECs for the special case of on-axis
polarisation. The results show that three lattice geometries are possible, depending on the

2A visualisation of the condensate density for each of these lattice geometries is shown on the cover of
this thesis (top left circle: triangular, top right circle: square, bottom left circle: rectangular).

3Ideally we should consider the sign of the total energy E(τ, η) = E0 + Eint(τ, η), however this would
require us to calculate E0, which depends on system-specific parameters such as the mass and total number
of particles (see Equation (2.14)).
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Figure 3.1: Plots showing the optimal values of τ and η in dipolar BECs with on-axis polarisation.
Plot (a) assumes the length scales in row (a) of Table 3.1 and plot (b) assumes the length scales
in row (b). In each plot, the black solid (dashed) line represents the optimal value of τ (η) with
reference to the scale on the left (right) vertical axis. By classifying the (τ, η) parameters, four
distinct regions in phase space are identified: a collapse phase, rectangular lattice (stripe) phase,
square lattice phase, and triangular lattice phase. These regions are indicated by coloured shading.
The red line with arrows on the left side specifies the region for which Eint(τ, η) < 0.

Parameter range

Phase Figure 3.1(a) Figure 3.1(b)

Collapse 1/εdd < −1.8945 1/εdd < −1.9462
Rectangular −1.8945 < 1/εdd < −1.8247 −1.9462 < 1/εdd < −1.9113
Square −1.8247 < 1/εdd < −1.8149 −1.9113 < 1/εdd < −1.9065
Triangular 1/εdd > −1.8149 1/εdd > −1.9065

Table 3.2: Definition of the four regions in phase space shown in Figures 3.1(a) and (b) in terms
of inequalities.
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value of 1/εdd and the values of the length scales lρ, lz and σ. In general, we find that a
triangular lattice geometry is favoured in regions where the local interaction contribution
dominates, as was seen in the non-dipolar case. However, in regions where the non-local
interaction contribution becomes significant, the favoured lattice geometries changes from
triangular to square or rectangular. Below a certain value of 1/εdd (corresponding to
reasonably strong, attractive contact interactions) the vortex lattice and the condensate
appear to collapse concurrently, although our analysis is not reliable in this region.

The results that we have obtained appear to qualitatively agree with previous results of
Zhang and Zhai [1] and Cooper et al. [2]. Zhang and Zhai also find that the lattice geometry
undergoes a transition from triangular → square → rectangular → collapse as the value
of 1/εdd decreases. It is difficult, however, to make a quantitative comparison between our
results because Zhang and Zhai do not mention the values of the length scales that they used.
Cooper et al. also find the same transitions between lattice geometries. However, they do not
find that the lattice collapses after passing through the rectangular lattice phase. Instead,
they observe a bubble phase — a different kind of periodic vortex structure in which the
vortices are arranged around “bubbles” of high particle density. It is not surprising that we
do not see the bubble phase in our results, because it is not a vortex lattice phase: it falls
outside the scope of our analytic treatment.

Yi and Pu also conducted a similar study of vortex lattice geometry based on numerical
simulations of the GP equation, however their results are not in agreement with those obtained
here, nor with those of Zhang and Zhai and Cooper et al. They only observe triangular
lattice geometries in their simulations, and conclude that the square and rectangular lattice
geometries do not exist. A possible explanation for this discrepancy, is that the particular
parameter values they chose for their simulations did not fall in the square and rectangular
lattice regions. It is very difficult based on numerical simulations alone to investigate the
entire parameter space thoroughly.

The surest way to resolve this discrepancy is by performing experiments, however it does not
appear as if any experimental groups are currently working towards producing fast-rotating
dipolar BECs. In the absence of experimental proof, it would be worthwhile to conduct
further numerical simulations based on insight from our analytic results.



Chapter 4

Vortex lattices in dipolar BECs with
off-axis polarisation

In this chapter, we shall extend our analysis of vortex lattices in dipolar BECs to consider
the more general case of off-axis polarisation. In this case, the dipole polarisation vector, p̂,
is no longer fixed along the axis of rotation, but is permitted to point in any direction in the
rotating frame. By allowing p̂ to vary in this way, we are able to explore a much larger range
of the parameter space of dipolar BECs. In fact, if we simultaneously allow εdd to vary, then
we are able to almost completely cover the entire parameter space, within the bounds of our
initial assumptions1.

4.1 Parametrisation of the dipole polarisation

In order to begin to consider the case of off-axis polarisation, we must first choose an appro-
priate parametrisation for the dipole polarisation vector, p̂. Since p̂ is a three-dimensional
unit vector, it would ordinarily be described in terms of two parameters; for example an
azimuthal and polar angle. However due to the cylindrical symmetry of the condensate, it
is convenient to fix the azimuthal angle, so that p̂ is described solely in terms of the polar
angle. Here we shall choose to fix the azimuthal angle so that the y-component of p̂ vanishes.
We then have that p̂ = cosα ẑ + sinα x̂, where α denotes the polar angle as measured from
the positive z-axis. It is also important to realised that p̂ rotates along with the condensate
so that it is stationary only in the rotating reference frame.

With this parametrisation for p̂, the dipolar interaction potential given in Equation (1.5)
becomes:

Udd(r) =
Cdd

4π

1− 3(cosα cos θ + sinα sin θ cosφ)2

r3
(4.1)

1See Section 1.6. In addition to these assumptions, we shall not explore the region of parameter space for
which Cdd is negative.

30
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where the vector r is expressed in spherical coordinates (r, θ, φ). This expression for Udd(r)
is significantly more complicated than the one we saw in the previous chapter for the case of
on-axis polarisation. Nevertheless, it is possible to proceed with the analysis by following the
same procedure used in the previous chapter.

4.2 Re-evaluating the dipolar interaction energy con-

tribution in the vortex lattice ground state

In order to account for the more general form of the dipolar interaction potential given in
Equation (4.1), we must re-evaluate the dipolar interaction energy contribution from scratch.
The quasi-2D expression derived in the previous chapter,

Edd[Φ] =
1

2

1

(2π)2

∫
dk⊥ ñ(k⊥)ñ(−k⊥)Ũ2D

dd (k⊥) (4.2)

remains valid, however we must re-calculate Ũ2D
dd (k⊥) for the new dipolar interaction potential

according to the definition given in Equation (3.7). After some work, it is possible to show
that

Ũ2D
dd (k⊥) =

Cdd

3
√

2πlz

[
cos2(α)F‖

(
k⊥lz√

2

)
+ sin2(α)F⊥

(
k⊥lz√

2

)]
, (4.3)

where we have defined an on-axis contribution F‖(u) = 2− 3
√
πueu

2
erfc(u) and an off-axis

contribution F⊥(u) = −1 + 3
√
πu2xe

u2erfc(u)/u.

The next step in the analysis is to substitute the Fourier transform of the vortex lattice
condensate density, given in Equation (3.9), into our new expression for Edd[Φ]. After
simplifying the resulting expression, we eventually find that

Edd(τ, η) =
N2Cdd

3(2π)
3
2 l3z

[(
1 + 3 cos(2α)

2

)(
lz
σ

)2

I(τ, η) +W(τ, η)

]
, (4.4)

where I(τ, η) and W(τ, η) are as defined previously in Equations (2.16) and (3.15). There is
however a slight difference in the form of W(τ, η), in that the function A2(q) which appears
in the definition must be replaced by:

A2(q) =
3

2
√
π

∫ ∞
0

du

∫ 2π

0

dφu

{
u2erfc(u)

[
sin2(α) cos2(φu)− cos2(α)

]
× exp

[
−
(
σ2

l2z
− 1

)
u2 − σ2qu√

2lz
cos(φu − φq)

]}
,

(4.5)

where we have expressed the vector q in polar coordinates: (q, φq).

As was the case in the previous chapter, the integral defining A2(q) is not tractable and
converges poorly when evaluated numerically. In order to evaluate W(τ, η) efficiently, we
must therefore make a number of approximations similar to those outlined in Section 3.4.
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Omitting the mathematical details, we eventually find that

W(τ, η) ≈
∑
q

(ḡq)2
(

e−
σ2q2

2 Aa2(2q) + e−
σ2q2

2 Ab2(2q)

)
, (4.6)

where

e−
σ2q2

2 Aa2(2q) =
3π

32(β2 − 1)
5
2

e
− (β2−2)q2σ2

4(β2−1)

×
{
I1

(
l2zq

2β4

4− 4β2

)[
β4l2zq

2(3 cos(2α) + 1)− 2 sin2(α) cos(2φq)(2− 2β2 + β4l2zq
2)
]

−I0
(
l2zq

2β4

4− 4β2

)[
(3 cos(2α) + 1)(2β2 + β4l2zq

2 − 2)− 2β4l2zq
2 sin2(α) cos(2φq)

]}
and

e−
σ2q2

2 Ab2(2q) = − 3

2
e
− q2σ2

2(1−β2)

∞∑
n=0

(−1)n(n+ 1)

(β2 − 1)2+n(2n+ 1)

×
{

sin2(α) cos(2φq) 1F1

(
−n; 2;

l2zq
2β4

2− 2β2

)
+ 2

(
cos2(α)− sin2(α) cos2(φq)

)
Ln+1

(
β4l2zq

2

2− 2β2

)}
.

4.3 Optimal vortex lattice geometry

The determination of the optimal vortex lattice geometry proceeds in a similar manner to the
on-axis polarisation case. As before, we define a dimensionless analogue of the interaction
energy contribution, given by

Ēint(τ, η) =

(
1 + 3 cos(2α)

2
+

1

εdd

)(
lz
σ

)2

I(τ, η) +W(τ, η), (4.7)

which may be minimised in place of the total condensate energy E(τ, η) = E0 + Eint(τ, η).
However, in order for this to be valid, we must continue to assume that the dipolar interaction
strength, Cdd, is positive.

It is important to recognise, once again, that the expression for Ēint(τ, η) given above depends
on a number of parameters in addition to τ and η. These parameters are the length scales, lρ,
lz and σ; the relative strength of the contact to dipolar interaction, εdd; and the polarisation
angle α. In the subsequent analysis, we shall fix the length scales to the values given in row
(a) of Table 3.1. Ultimately, we would like to allow the remaining two parameters, εdd and
α, to vary continuously across a broad range of values. However to begin with, we shall set
α = π

2
so that we may examine the “most extreme” case of off-axis polarisation in detail.
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4.3.1 Dipole polarisation in the plane of rotation

For the case of off-axis polarisation where α = π
2
, the dipole polarisation vector is fixed in

the plane of rotation — the xy-plane in our coordinate system. In order to visualise the
optimal vortex lattice geometry in this situation, we may plot the optimal values of τ and η
as a function of 1/εdd, as we did for the case of on-axis polarisation (α = 0) in Figure 3.1. In
generating the plot, we shall continue to use the same representation for the optimal values
of τ and η, and the various phases of the system as we did previously. The result is shown in
Figure 4.1. Looking at this figure, we immediately notice a number of differences compared
to the corresponding figure for the case of on-axis polarisation (Figure 3.1(a)).

Perhaps the most noticeable difference is the fact that only two lattice geometries are
observable for the α = π

2
case: the triangular and square geometries. The rectangular lattice

(stripe phase) region, which appears in Figure 3.1(a), is completely absent in Figure 4.1.
This does not necessarily imply that there is no rectangular lattice region for the α = π

2
case,

however if one does exist, then it must have a width smaller than the horizontal resolution of
the plot (∆1/εdd = 0.005). If a rectangular lattice region truly does not exist, then this would
be a rather interesting situation from a physical perspective. Without a rectangular lattice
region between the collapse phase and square lattice regions, the vortex lattice undergoes a
sudden collapse as the value of 1/εdd decreases. This is evident from the fact that the phase
parameter, τ , jumps discontinuously, rather than smoothly falling from 1 to approximately
zero.

Another point of difference between Figures 4.1 and 3.1(a) is the width and location of
the phase boundaries. In Figure 4.1, the collapse boundary, and the boundary between
the square and triangular lattice regions, are both shifted in the positive 1/εdd direction
compared to those in Figure 3.1(a). This means that the phase boundaries occur at positive
values of 1/εdd for the α = π

2
case, rather than at negative values as we saw for the case of

on-axis polarisation. The particular values of 1/εdd at which the phase boundaries occur
for the α = π

2
case are given in Table 4.1. It is interesting to note that the non-triangular

lattice phases (i.e. the collapse phase and the square lattice phase) both occur for values of
1/εdd < 1. This is happens to correspond to the values of 1/εdd where the dipolar interaction
dominates over the contact interaction.

As yet, we have not taken into consideration the stability of the condensate itself. According
to our previous definition, the condensate is deemed to be unstable if Eint < 0 and stable
otherwise. Looking at the red line in Figure 4.1, we see that the unstable region occurs
for values of 1/εdd less than about 0.97. This is very different from the case of on-axis
polarisation, where the Eint = 0 line and the collapse phase boundary were found to occur at
roughly the same value of 1/εdd. For the α = π

2
case, we see that the condensate becomes

unstable before the square lattice phase and collapse phase are able to occur. This would
suggest that the square lattice phase cannot be supported by a condensate with α = π

2
.

We should be careful to note, however, that our classification of stability based on the sign of
Eint only provides us with an indication of the stability of the condensate. It may be possible
for the condensate to be stable even if Eint < 0, provided that E0 is large enough so that the
total energy E = E0 + Eint is positive. However, since E0 is system-specific (it depends on
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Figure 4.1: Plot showing the optimal values of τ and η in dipolar BECs with polarisation in
the plane of rotation (α = π

2 ). The length scales lρ, lz and σ are assumed to satisfy the relations
in row (a) of Table 3.1. The black solid (dashed) line represents the optimal value of τ (η) with
reference to the scale on the left (right) vertical axis. The coloured shading identifies the phase
which corresponds to the optimal (τ, η) values in the region. The red line with arrows on the left
side specifies the region for which Eint(τ, η) < 0.

Phase Parameter range

Collapse 1/εdd < 0.8687
Square 0.8687 < 1/εdd < 0.9075
Triangular 1/εdd > 0.9075

Table 4.1: Definition of the three regions in phase space shown in Figure 4.1 in terms of inequalities.

the mass and total number of particles among other variables as is shown in Equation (2.14)),
it is not possible for us to give a more accurate evaluation of stability based on the total
energy E, without specialising our results.

4.3.2 Varying the dipole polarisation

In this section, we shall perform the minimisation of Ēint(τ, η) whilst allowing both α and
εdd to vary over a large range of values. In doing so, we shall construct a phase diagram
for the optimal vortex lattice geometry in the (1/εdd, α) parameter space. As mentioned
previously, this will allow us to almost completely explore the parameter space of vortex
lattices in dipolar BECs within the bounds of our initial assumptions.

In order to construct a phase diagram for the optimal vortex lattice geometry, we must
calculate the optimal values of τ and η over a wide range of (1/εdd, α) values. From a
computational perspective, it is not at all efficient to do this on a uniform grid, because there
are jump discontinuities in the optimal values of τ and η which may only be resolved at high
resolution. To resolve these features clearly and efficiently, we shall use a technique called
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adaptive sampling. This involves sampling more points where the optimal values of τ and η
are found to vary significantly, and fewer points elsewhere.

In total, we perform the minimisation at 9835 points within the region: −2.1 ≤ 1/εdd ≤ 1.1
and 0 ≤ α ≤ π

2
. In order to calculate the phase boundaries, we apply an interpolation

function to the optimal values of τ and η, and extracting the appropriate contours. For
example, to calculate the collapse boundary, we extract the points for which the optimal
value of τ is minutely above 0.05. We then use these points to generate a B-spline curve
which yields a smooth phase boundary. Applying a similar procedure to calculate the other
phase boundaries, we obtain the phase diagram shown in Figure 4.2. In this figure, we have
only plotted the vortex lattice phases — we have not included the optimal values of τ and η.

Looking at the figure, we essentially see a smooth transition between the two cases we have
already studied: the case of on-axis polarisation (α = 0) and the case of polarisation in the
plane of rotation (α = π

2
). At the bottom of the plot, where α = 0, the rectangular, square

and triangular lattice geometries are possible. As α increases, the rectangular lattice region
becomes narrower in width, until it eventually disappears at α ≈ 3π

16
. Coincidentally, at

approximately the same value of α, the red Eint = 0 line also begins to separate from the
collapse phase boundary. It continues this trend as the value of α increases further.

4.4 Summary

We have extended our analysis of vortex lattice geometry in dipolar BECs to consider the case
of off-axis dipole polarisation. The results show that the lattice geometry varies significantly
as a function of the dipole polarisation angle α. Specifically, we find that the rectangular
lattice region decreases in width as α increases above zero, until it eventually vanishes at
α ≈ 3π

16
. This means that only the triangular and square lattice geometries are possible in

situations where the dipole polarisation is tilted far off-axis.

In addition, we assessed the stability of the BEC based on the sign of the interaction energy
contribution. This allowed us to determine whether or not the BEC could support the vortex
lattice in particular regions of the phase space. From these considerations, we concluded that
the BEC is prone to collapse in the square lattice region when the dipole polarisation is tilted
far off-axis. This means that it is not always possible for a dipolar BEC to support a square
vortex lattice geometry in the off-axis case. It is only possible if conditions are favourable, so
that the single-particle energy contribution is large enough to stabilise the system.

There is only one related study by Yi and Pu [28], with which we may compare the results
obtained in this chapter. Yi and Pu do not consider off-axis polarisation arbitrarily, however
they do consider the special case where the polarisation is in the plane of rotation (α = π

2
).

Through numerical simulation of the GP equation, they find that a square lattice geometry
is favoured. This supports our findings, however we should be careful to note that Yi and
Pu’s simulation was not strictly in the fast-rotating limit that we have assumed.
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Chapter 5

Conclusions, ongoing and future work

5.1 Conclusions

In this thesis, I have outlined a method for analysing vortex lattice geometry in quasi-2D
BECs in the fast-rotating limit. The basic idea behind the method was to construct a
variational ansatz for the vortex lattice ground state, evaluate the corresponding energy in
the rotating frame, and minimise with respect to the variational parameters. In doing so, it
was possible to determine the energetically favourable vortex lattice geometry based on the
optimal values of the variational parameters.

In conducting the vortex lattice analysis, a number of assumptions were made about the
properties of the BEC and the vortex lattice itself. Specifically, I assumed that the BEC was
in the limit of fast rotation, weak interactions and strong longitudinal trapping, and that the
vortex lattice was uniform and centred on the axis of rotation. With these assumptions, I
was able to derive a relatively simple ansatz for the vortex lattice ground state. This enabled
me to proceed reasonably far with the problem analytically, however when it came to the
final step of energy minimisation I resorted to a numerical treatment.

Using this method, I analysed vortex lattice geometry in both non-dipolar and dipolar
BECs. I began by confirming the well-established result that vortex lattices in non-dipolar
BECs are triangular. I then considered dipolar BECs, for which I discovered three possible
vortex lattice geometries: triangular, square or rectangular. In general, the triangular lattice
geometry is favoured in dipolar BECs with dominant positive local interactions (1/εdd & 1),
whereas the square and rectangular lattices are favoured in those with dominant non-local
interactions (|1/εdd| . 1). In addition to these three vortex lattice geometries, I also found
that it is sometimes favourable for the vortex lattice to collapse. This appears to occur in
dipolar BECs with large negative local interactions (1/εdd . −1), although the analysis is
not necessarily reliable in this regime.

The results that I have obtained appear to qualitatively agree with previous analytical
studies of vortex lattice geometry in dipolar BECs with on-axis polarisation by Zhang and
Zhai [1] and Cooper et al. [2]. In this work, however, I have additionally considered the

37
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case of arbitrary dipole polarisation. I find that the direction of the dipole polarisation has
a significant effect on the favoured vortex lattice geometry. In particular, the rectangular
lattice ceases to exist as the dipole polarisation is tilted off-axis. I also observe a shift in the
vortex lattice phase boundaries in the positive 1/εdd direction as the dipole polarisation is
tilted further and further off-axis.

This is the first time that anyone has considered vortex lattice geometry for the case of
arbitrary dipole polarisation. By extending my analysis to treat this case, I have been able
to investigate vortex lattice geometry over a larger range of the parameter space of dipolar
BECs than has been previously considered. My results should be useful in guiding future
experiments and simulations regarding vortex lattice geometry in dipolar BECs.

5.2 Ongoing work

Throughout this thesis, I have assumed that the ansatz for the vortex lattice ground state
derived in Chapter 2 provides an appropriate description of vortex lattices in both non-dipolar
and dipolar BECs. There appears to be no reason to doubt the validity of this ansatz, so
long as the following conditions are met:

(i) the BEC is in the LLL,

(ii) the BEC is cylindrically symmetric, and

(iii) the vortex lattice is uniform and centred on the axis of rotation.

Conditions (i) and (iii) appear to be reasonable for both non-dipolar and dipolar BECs within
the scope of our initial assumptions (fast rotation, weak interactions and strong longitudinal
trapping). Condition (ii), however, is somewhat problematic. Although non-dipolar BECs
and dipolar BECs with on-axis polarisation do have cylindrical symmetry, dipolar BECs
with off-axis polarisation do not. To see this, one may note that the Hamiltonian for a
dipolar BEC with off-axis polarisation depends on the azimuthal angle. One may also
understand the broken cylindrical symmetry from a more physical perspective by picturing
the elongation of a dipolar BEC along the polarisation direction — an effect that is well-known
from experiment [38]. Clearly, if the elongation occurs along any direction other than the
z-direction, as it does for the case of off-axis polarisation, the cylindrical symmetry about
the z-axis will be broken.

It is unknown whether the broken cylindrical symmetry for the case of off-axis polarisation
has any effect on the preferred vortex lattice geometry. In theory, I should be able to test
this by redoing the vortex lattice analysis using an ansatz that does not assume cylindrical
symmetry. In practice, however, we shall see that this adds considerable complexity to the
problem which is difficult to overcome.
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5.2.1 A new ansatz for the vortex lattice ground state

Although it is no longer appropriate to assume cylindrical symmetry for the case of off-axis
polarisation, there is still another useful symmetry that we may exploit: reflection symmetry.
For our choice of coordinate system, this reflection symmetry occurs about the xz-plane

— the plane which contains both the polarisation vector p̂ and the axis of rotation. It is
possible to prove this mathematically by noting that the Hamiltonian H0 + V (in particular
the Udd(r) term) is invariant under the replacement φ→ −φ.

In order to derive a new ansatz for the vortex lattice ground state which assumes reflec-
tion symmetry, we only need to make some minor modifications to the derivation for the
cylindrically symmetric case which was given in Section 2.2.3. Specifically, we find that it is
necessary to introduce two new variational parameters: λ and ϑ.

The parameter λ is required to describe the deviation of the condensate cloud from cylindrical
symmetry. It is defined as the ratio of the width of the condensate cloud along the y-direction
divided by the width along the x-direction. If the density profile of the cloud is expressed in
the form exp(−x2/σ2

x − y2/σ2
y), then the aspect ratio would be written as λ = σy/σx. For a

cylindrically symmetric BEC, the width of the cloud along the x- and y-directions must be
the same, which implies that λ = 1. However, for a non-cylindrically symmetric condensate,
it must be the case that 0 < λ < 1 or λ > 1. In the current context, it is expected that the
optimal value of λ will satisfy 0 < λ < 1. This is because we know that the dipolar BECs
elongate along the direction of polarisation, which implies that σx > σy.

The other new parameter, ϑ, is required to allow the vortex lattice to adopt any orientation
with respect to the polarisation direction p̂. It is defined to be the angle between the first
lattice basis vector, b1, and the projection of the dipole polarisation onto the plane of rotation,
p̂⊥. For a cylindrically symmetric BEC, we do not expect the energy to vary as a function
of the orientation of the vortex lattice, so ϑ may be arbitrarily set to zero. However, for a
non-cylindrically symmetric BEC, it is conceivable that the energy may depend on ϑ. Here,
we may additionally use reflection symmetry about the x-axis to limit the possible values of
ϑ to 0 or π

2
.

By modifying the derivation of the ansatz for the vortex lattice ground state to incorporate
the new λ and ϑ parameters, it is possible to show that the condensate density must be of
the following form:

n(ρ) =
2Nλ

πσ2(1 + λ2)
e
− 2

1+λ2

(
λ2x2+y2

σ2

)∑
q

ḡqeiq·R̂ϑρ, (5.1)

where R̂ represents the standard two-dimensional rotation operator and ḡq is redefined so
that

ḡq = gq/
∑
v

gve−
σ2(1+λ2)

8 [(v·R̂ϑx̂)2/λ2+(v·R̂ϑŷ)2].
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5.2.2 Re-evaluating the condensate energy

Now that we have a new ansatz for the two-dimensional condensate density, n(ρ), we must
re-evaluate the entire quasi-2D energy functional: E[n] = E0[n] +Econt[n] +Edd[n]. Omitting
the details of the calculation, we find that the single-particle energy contribution E0[n]
evaluates to:

E0(λ) = N(~Ω +
1

2
~ωz) +

N~σ2(ω2
ρ − Ω2)

2Ωl2ρ

(
1 + λ2

2λ

)2

, (5.2)

and the interaction energy contribution, Eint[n] = Econt[n] + Edd[n], evaluates to:

Eint(τ, η, λ, ϑ) =
N2Cdd

3(2π)
3
2 l3z

[(
1 + 3 cos(2α)

2
+

1

εdd

)(
lz
σ

)2

I(τ, η, λ) +W(τ, η, λ, ϑ)

]
. (5.3)

Here I andW are slightly modified compared to definitions given in previous chapters. After
making appropriate approximations, we find that

I(τ, η, λ) ≈ λ

1 + λ2

∑
q

(ḡq)2 (5.4)

and

W(τ, η, λ, ϑ) ≈
∑
q

(ḡq)2 exp

[
−σ

2(1 + λ2)

2

(
(q−ϑx )2

λ2
+ (q−ϑy )2

)]
A2

(
2q−ϑx
λ

, 2q−ϑy

)
, (5.5)

where

A2(qx, qy) =
3

2
√
π

∫ ∞
0

du

∫ 2π

0

duφ

{
u2eu

2

erfc(u)
(
sin2 α cos2 uφ − cos2 α

)
× exp

[
−σ

2(1 + λ2)

2l2z

(
u2 cos2 uφ

λ2
+ u2 sin2 uφ +

lzqxu cosuφ√
2λ

+
lzqyu sinuφ√

2

)]}
.

(5.6)

Hence we have given an expression for the total energy, E(τ, η, λ, ϑ) = E0(λ) +Eint(τ, η, λ, ϑ),
of a non-cylindrically symmetric dipolar BEC in the vortex lattice ground state. We have
emphasised, through our choice of notation, that this expression depends on four variational
parameters: τ , η, λ and ϑ. As a result, it is now necessary to perform the energy minimisation
with respect to λ and ϑ, in addition to τ and η. This makes the numerical minimisation
significantly more challenging, because the global minimum now exists in a much larger
variational parameter space.

In addition to the increased size of the variational parameter space, we must also contend
with convergence issues in numerically evaluatingW(τ, η, λ, ϑ) as we did in previous chapters.
Once again, these issues stem from the poor convergence properties of the integral that
defines A2(qx, qy) in Equation (5.6). Previously, we dealt with this problem by analytically
evaluating the integral over uφ and breaking up the remaining integral over u into an
infinite series of simpler, tractable integrals. Unfortunately, this approach is no longer
effective due to the broken cylindrical symmetry of the integrand. After exploring a number



Chapter 5. Conclusions 41

of alternative approaches, the best option we could find was to do the integral over u
analytically (surprisingly it is possible) and the integral over φu numerically. Convergence is
still slow with this approach, because the integral over φu is highly oscillatory, however it is
a vast improvement on evaluating the entire double integral over u and φu numerically.

5.2.3 Optimal vortex lattice geometry

In theory, we can use the non-cylindrically symmetric expression for the condensate energy,
given above, to re-calculate the optimal vortex lattice geometry in dipolar BECs with off-axis
polarisation. Unfortunately, however, this is not feasible from a computational perspective,
because our implementation of the condensate energy takes too long to converge to sufficient
accuracy. Even if we include a relatively small number of terms in the Fourier decomposition,
say M = 3, our implementation takes of order minutes to evaluate for a given combination of
variational parameters. If we increase the number of terms to M = 15, which is required to
explore the parameter space where τ and η approach zero, then the evaluation time exceeds
one hour. This means that it is impractical to minimise E(τ, η, λ, ϑ) with respect to τ , η, λ
and ϑ, because doing so requires hundreds of evaluations of E, each of which already takes
an exceedingly long time.

Although there are severe computational limitations surrounding the minimisation of our
new expression for the condensate energy, we may still make some meaningful calculations if
we restrict our attention to triangular and square lattices only. By restricting our attention
in this way, we may avoid τ and η approaching zero, which permits us to set M = 3, thereby
reducing the computation time to a manageable level. One calculation that we may do within
these restrictions, is to minimise the energy with respect to λ and ϑ for both triangular and
square lattices. In doing so, we can expect to gain some insight on whether the optimal
values of λ and ϑ vary between the two different lattice geometries.

Since the computation is still quite slow (even with M = 3), we shall only perform the energy
minimisation at two points in the (1/εdd, α) parameter space: (0.9, π

2
) and (0.95, π

2
). We have

chosen these points for two reasons:

(i) They occur at α = π
2
, where the deviation from cylindrical symmetry is expected to be

most prominent.

(ii) They are well within the square and triangular lattice regions based on the results of
Figure 4.1. This means that it is less likely that a rectangular lattice would become
favourable at these points, even after accounting for the deviation from cylindrical
symmetry.

In performing the energy minimisation with respect to λ and ϑ at these two points, we should
technically consider the total energy E(τ, η, λ, ϑ) = E0(λ) + Eint(τ, η, λ, ϑ) since both the
single-particle and interaction energy contributions depend on λ. For now, however, we shall
only look at the role of the interaction energy contribution, since it is the only part of the
energy that depends on the dipole polarisation. The results of the minimisation are given in
Table 5.1.
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Cylindrically symmetric ansatz New ansatz

1/εdd Phase Eint Phase Optimal λ Eint

0.90 Square −4784.22 Square 0.93 −4979.49
0.90 Triangular −4775.18 Triangular 0.93 −4788.31

0.95 Square −1331.22 Square 0.78 −1377.22
0.95 Triangular −1382.86 Triangular 0.78 −1426.81

Table 5.1: Results of the minimisation of the new expression for Eint with respect to λ and ϑ for
triangular and square lattices at two values of 1/εdd with α = π

2 . The optimal value of ϑ is not
included in the table, because Eint was found to be independent of ϑ. The results show that the
optimal value of λ is the same for both triangular and square lattice geometries.

Looking at the results, we may conclude that the variational parameter ϑ is essentially
irrelevant, since the minimum value of Eint(τ, η, λ, ϑ) is found to be the same for any choice
of ϑ. This suggests that the orientation of the vortex lattice is unaffected by the broken
cylindrical symmetry due to the off-axis polarisation. In contrast, we find that the optimal
value of λ does deviate from the cylindrically symmetric value of 1. At both points we have
considered the optimal value is found to be less than 1, which indicates that the BEC has
stretched along the direction of polarisation. Interestingly, however, we find that the optimal
value of λ does not depend on whether the lattice geometry is square or triangular — it
is the same for the square and triangular lattice at each of the points we considered. This
provides decent evidence that λ is independent of the vortex lattice geometry (although we
have not yet been able to prove this for all possible vortex lattice geometries). Consequently,
we may tentatively claim that the vortex lattice geometry is unlikely to be affected by the
broken cylindrical symmetry due to the off-axis polarisation1. As such, we can be reasonably
confident that our previous results regarding vortex lattice geometry for the case of off-axis
polarisation are correct, even though we did not take the broken cylindrical symmetry into
account.

5.3 Future work

The work that I have begun regarding broken cylindrical symmetry for the case of off-axis
polarisation warrants further investigation. Possible future directions could include making a
perturbative expansion in λ, looking for a more efficient implementation of Eint(τ, η, λ, ϑ), or
pushing through with calculations on a more powerful computer. In addition, it would also
be worthwhile to conduct numerical simulations of the GP equation to check the results I
have obtained using an alternative method.

1Since λ quantifies the extent to which the cylindrical symmetry is broken
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