Needle in a Haystack: Label-Efficient Evaluation under Extreme Class Imbalance

Neil Marchant and Ben Rubinstein

School of Computing and Information Systems, University of Melbourne, Australia

1. Evaluation: who watches the watchmen?

- Classifier evaluation is unreliable when statistical bias and noise are uncontrolled
- Difficult to overcome due to costly ground truth, data imbalance and biased sampling

2. Passive sampling fails under data imbalance

When the performance measure is sensitive to rare instances, a large passive sample is needed to drive down statistical error

Example: in record linkage finding a match is like finding a needle in a haystack - e.g. 1 match per 1 million non-matches

Other affected domains: rare diseases, risk prediction, extreme classification

3. Our AIS-based evaluation framework

Objective: accurate and precise performance estimates using minimal labeled examples

Given: systems to evaluate; target performance measure; unlabeled pool of examples; labeling oracle (e.g. human expert)

Return: sampling history; estimated performance measure; approx. confidence region (optional)

Design: application of *adaptive importance sampling*—labels collected in batches; items selected to label via an adaptive proposal.

4. Generalized performance measures

Supported performance measures are vectorvalued risk functionals *R* mapped through *g*

G = g(R) with $R = \mathbb{E}[\ell(X, Y)]$

Encompasses: classification and regression measures; a vector of measures; PR/ROC curves

5. Theoretical guarantees

Peformance estimates satisfy:

strong consistency

• a central limit theorem (CLT)

Use the CLT to derive the asymptotically-optimal variance-minimizing proposal

6. Adapting the proposal

Given: online model for the oracle response; sampling history

Return: approximation to the asymptotically-optimal proposal

We instantitate with a Dirichlettree model that's asymptoticallyoptimal for a deterministic oracle

7. Experimental results

Code: github.com/ngmarchant/ActiveEval **Full tech report:** arXiv 2006.06963

N. Marchant acknowledges the support of an Australian Government Research Training Program Scholarship. B. Rubinstein acknowledges the support of Australian Research Council grant DP150103710.

